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On the Equation Y2 = X( X2 + p) 

By A. Bremner and J. W. S. Cassels 

Abstract. Generators are found for the group of rational points on the title curve for all primes 
p 5 (mod 8) less than 1,000. The rank is always I in accordance with conjectures of Selmer 
and Mordell. Some of the generators are rather large. 

1. Let p be a positive prime, 
(1) p 5 (mod8). 

It is'easy to see that the Mordell-Weil rank of 

(2) Y2 =X(X2 +p) 

is at most I (e.g. Section 5 of Birch and Swinnerton-Dyer [1]); and the Selmer 
conjecture [5] predicts rank exactly 1. As we shall note below, this is equivalent to a 
conjecture of Mordell [3], [4]. 

We shall verify this conjecture for all p < 1,000. Table 1 gives for each p a point 
Po which, together with the point (0,0) of order 2, generates the entire Mordell-Weil 
group. Some of the generators P0 are rather large, the most startling being that for 
p = 877, namely 

X 37 5494 5281 2716 2193 1055 0406 9942 0927 92346201 

3 6215 9877 7687 1505 4254 6322 0780 6972 3804 4100 

( 256 2562 6798 8926 8093 8877 6834 0455 1308 9648 6691 5320 4356 6034 6478 6949 
4900 7802 3219 7875 8895 9802 9339 9592 8925 0960 6161 6470 7799 7926 1000 

A rational point (X, Y) on (3) is of the shape 

(4) X= R/S2, Y= T/S3 
for integers R, S, T with 

(5) R > 0, (R,S) = 1. 
The height H( X, Y) is by definition 

(6) H(X, Y) = max(R, S2), 

so that the height of (3) is - 3.75 x 1041. It is of interest to compare this with the 
discriminant JAI = 4p3 of (2), which for p = 877 is - 2.70 x 109. Hence H(PO) - 
A1441. Lang observed to us that in tables of elliptic curves and generators published 
to date the heights of generators are never much greater than JA1l2. This, in our view, 
is almost certainly because these tables cover only curves with relatively small 
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discriminant. Further, unless one has strong reason to believe that a rational point 
exists, there is a marked reluctance to persevere in a search once the numbers cease 
to be small. 

2. In (2) clearly either X or pX is square. Since 

(7) (X, Y) + (0,0) = ( p/X, -py/X2), 

we may suppose that X is a square. Then 

(8) X = r2/S2, Y- rtls3 

for integers r, s, t with r,s coprime and 
4 4 = 2 

(9) r + ps =t 

It was for this equation that Mordell made his conjecture mentioned above. 
Clearly 

(10) r O, t0(modp), 

and (1) implies that 

(11)~~~~~ rt-l, s-O (mod 2). 

We choose the sign of t so that t 1 (mod4), and then 

(12) t 1 (mod8) 

by (9) and (1 1). Since (9) can be written as 

(13) (t + r)(t - r2) = ps4 

we have t + r2 = 2a4 or 2pa4 for some odd a. The first alternative leads to a point 
Q on (2) with (X, Y) = 2Q. Hence by the "infinite descent" argument we may 
suppose that there is a copfime pair of integers a, b with 

(14) r2 =pa4 - 4b4 a b 1 (mod2) 

and 

(15) s = 2ab, t = pa4 + 4b4. 

We can write (14) in the shape 

(16) (r + 2ib2)(r - 2ib2) = pa4 

and consider factorization in Z[i]. By (1) 

(17) p = u 2+ 4V2, 

where u, v are odd and without loss of generality 

(18) v 1 (mod4). 

The sign of r may be chosen so that r + 2ib2 is divisible by u + 2iv, and then (16) 
implies 

(19) r + 2ib2 = (u + 2iv) unit (c + id )4 

for some c, d with 

(20) c2 + d2 = a. 
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On considering (19) modulo 8 and using (18), we find that the unit is necessarily 1. 
Hence on equating real and imaginary parts, 

(21) b2= v(12 -M2) + uliM, 

with 

(22) 1= c2 - d2, m = 2cd. 

If there are solutions of (2), then (21) must have rational solutions. This turns out 
to be the case for all the p under consideration, and so every solution of (21) is given 
by one of a finite number of parametrizations 

(23) / = q1(O,s), m = q2(0,4), b = q3(G,,). 

Here q1, q2, q3 are known quadratic forms with rational integer coefficients and 0, 4 
are integers to be found. It turns out that only one parametrization is compatible 
with the other conditions. 

We have now 

(24) qj(O,4) + iq2(G,4) = (C + id)2. 

Arguing as before, but in Z[i], we have 

(25) 0 = Q0(X) 4' = Q2(X,), c + id =0( , 

where Q1, Q2, Q3 are known quadratic forms with coefficients in Z[i] and where X, y 
are elements of Z[i] to be found. Again, only one parametrization turns out to be 
compatible with the other conditions. The condition that 0, 4 are real leads to a pair 
of simultaneous homogeneous quadratic equations in the four variables Rex, ImX, 
Re,i, Imp. These were the equations searched for solutions. though most of the 
entries in Table I could be spotted at an earlier stage in the process. The primes 317, 
797, 877, 997 required an HP67, but the other solutions were found by hand. 

At the suggestion of the referee we illustrate the last part of the argument and take 
(26) p = 877, u = 29, v =-3. 

Then (21) is 

(27) b 2+ 312 - 3m2 - 291m =0. 

The left-hand side vanishes for (b, 1, m) = (7,2, 1) and so, by a standard algorithm, 
(27) is equivalent to 

(28) - LM + 877N2 = O, 
where the forms 

(291) L = 14b - 171- 64m, 

(292) M = 5074b - 62421 - 23035m, 

(293) N=9b-111-41m 

are unimodular. On taking - b for b if need be, we have 877 + M, so (28) implies 

(30) + L = 87702 +M = ,2, +N = Oc 

for some integers 0, , and some choice of sign. 
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On solving- for b, 1, m and putting 
(31) 4 = -4 + 5630, 

we obtain 

(32w) ?b= 742_ 11+0+2702, 

(322) +1= -2 _ 2 + 6,0 - 302 

(323) + m= -,2 - 4,0 - 702. 

The lower sign is incompatible 2-adically with (22), so we must take the upper sign. 
By (22) we have 

(33) / + im = (c + id)2 = y2 (say); 

and so 

(34) y2 + (2 + i)'2 + (-6 + 4i)4' + (3 + 7i)02 =0 

by (322), (323). This is equivalent to 

(35) (6- 29i)S2 + RT= 0, 

where 

(361) S = (1 + i)y + (-4 + i)@ - i4 , 

(362) R = (3 + 2i)y + (- 10 + 5i)0-2i4, 

(363) T= (- 15 + 6i)y + (8 - 45i)O + (14 + 4i)4 . 

Hence 

(371) 20 = (-4- 3i)R + (22 + 10i)S + iT, 

(372) 2 = (-1 + 2i)R + (6-16i)S + T, 

(373) 2y =(-15 + 6i)R + (70 - 46i)S + (3 + 2i)T. 

By (35), on taking - y for y if need be, there are Gaussian integers X, ,u such that 

(38) R = (1 + i)X2, T= (6- 29i)(1 ? i)A2, S = (1 T i)A,u, 

for either the upper or the lower signs. Put 

(39) A=x+iy, ,u=u+iv, 

where x, y, u, v are rational integers. On substituting (38), (39) in (37,), (372) we get 

(401) 20 = F,(x,y,u,v) + iF2(x,y,u,v), 

(402) 24 = G,(x,y,u,v) + iG2(x,y,u,v), 

where F,, F2, GI, G2 are quadratic forms with rational integer coefficients. [There is 
a set of forms for each choice of sign in (38).] Hence 

(41) F2(x,y,u,v) = G2(x,y,u,v) = 0. 

If the lower signs hold in (39), the simultaneous equations (41) turn out to be 
2-adically incompatible, so we must take the upper signs. A search yields 
(42) A = 324 - 385i, A = 136 + 145i. 

It may be noted that (41) implies congruence conditions on x, y, u, v to various small 
moduli, and these greatly facilitate the search. 



ON THE EQUATION y2 = X(X2 + p) 261 

3. Having indicated how the rational points P0 were obtained, we must now show 
that they are generators. This requires consideration of heights. 

Let (4) be a rational point P on (2). The X-coordinate of 2P is 

(43) = (R2 -pS)2 - (R2 - pS)2 
(43) Al ~~S2T2 4S2(R2 + pS4) 

We consider only points of the type (8), (9), so p + R. It is then easy to see that the 
numerator and denominator in (43) are coprime. Hence 

(44) H(2P) = max((R2 - pS4)2 4RS2 (R2 + pS4)) 

We distinguish three cases: 
(i) 0 < S2/R < l/2p'/2. Then 

H(2P) > (R2-pS")2> (9/16)R4 = (9/16) H(P)4. 

(ii) 1/2p'2 p S2/R < 1. Then 

H(2P) > 4RS2(R2 + ps4) > (2/p'/2)R 4= (2/p I/2)H(P)'4. 

(iii) 1 < S2/R. Then 

H(2P) > (R2 - pS4)2 > (p 1)2S8 = (p _ 1)2H(P p) 

Hence in any case 

(45) H(2P) > (2/pl /2 )H( P)4 

Similarly, but more simply, 

(46) H(2P) p2 H( P) 

With the usual notation h (P) = logH(P) it follows that 

(47) 4h(P) - Ilog(p/4) < h(2P) < 4h(P) + 2logp. 

Now (43) is a perfect square, so the argument applies to 2P instead of P. By 
induction 

4nh(P) - (1/6)(4 n - 1)log(p/4) < h(2Wnp) 

< 4nh(P) + (2/3)(4n - I)logp 

for every n > 1. The Tate height is 

(48) h (P)= lim 4 h(2nP), 
n -0oo 

so 

(49) h(P) - (l/6)log(p/4) < h(P) <s h(P) + (2/3)logp. 
Let P0 be one of the points on (2) listed in Table 1. The descent argument shows 

that neither P0 nor P0 + (0,0) is divisible by 2. Suppose that P0 is divisible by 3, say 
PO = 3Q. Let q be a prime distinct from 2, p. Then (2) has good reduction modulo q 
and the reduced points Fo, Q modq would satisfy Po = 3Q. For each P0 Table 1 
gives a prime q such that Fo is not divisible by 3 in the group of points on (2) over 
the finite field Fq. Hence if P0 is not a generator we have P0 = kQ for some odd 
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k > 5 and some rational point Q. By the quadratic property of heights 

(50) h(Po) = k2h(Q) 

(e.g. Cassels [2, p. 262]). From this and (49) it follows that 

h(Q) < (I/k2)h(PO) + (2/3k2)logp + (1/6)log(p/4) 
< (1/25)h(P0) + (2/75)logp + (1/6)log(p/4). 

Even in the extreme case p = 877 this implies H(Q) < 136, which in turn implies a 
solution of (9) with 0 < r, s < 12; a contradiction. 
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